
Software Development and Maintenance Plan
This document summarizes development and maintenance activities.

Mapping of Standard Requirements to Document Sections

ISO 13485:2016 Section Document Section
7.3.2 Design and Development Planning 1, 2, 3, 7

Classes IEC 62304:2006 Section
Document
Section

A, B,
C

4.4.2 Risk Management Activities 1

A, B,
C

5.1.1 a) (Processes) 1

A, B,
C

5.1.1 b) (Deliverables) 1

A, B,
C

5.1.1 c) (Traceability) 1

A, B,
C

5.1.1 d) (Configuration and Change Management) 1, 5

A, B,
C

5.1.1 e) (Problem Resolution) 1

A, B,
C

5.1.2 Keep Software Development Plan Updated 1

A, B,
C

5.1.3 Software Development Plan Reference to System
Design and Development

2

C 5.1.4 Software Development Standards, Methods and
Tools Planning

B, C 5.1.5 Software Integration and Integration Test
Planning

3, 8

A, B,
C

5.1.6 Software Verification Planning 7

A, B,
C

5.1.7 Software Risk Management Planning 1

A, B,
C

5.1.8 Documentation Planning 6

A, B,
C

5.1.9 Software Configuration Management Planning 5

B, C 5.1.10 Supporting Items to be Controlled 5
B, C 5.1.11 Software Configuration Item Control Before

Verification
5

1



Classes IEC 62304:2006 Section
Document
Section

B, C 5.1.12 Identification and Avoidance of Common
Software Defects

4

A, B,
C

6.1 Software Maintenance Plan. 10

1 Relevant Processes and Documents
Please see the relevant processes for the following activities:

• Risk management activities incl. SOUP risks: SOP Integrated Software
Development

• Problem resolution: SOP Problem Resolution
• Software development incl. deliverables, traceability, regular update of

software development plan: SOP Integrated Software Development
• Change management: SOP Change Management
• SOUP List
• Usability engineering activities: SOP Integrated Software Development

2. Required Resources
2.1 Team

Role Count Responsibilities
Head of
Development

1 Prioritizing tasks and technical oversight

Frontend Developer 2 Implementing Frontend Software
Requirements

Backend Developer 1 Implementing Backend Software
Requirements

2.2 Software

IEC 62304 Software Safety Classification The software safety classifi-
cation for [enter device name] has been established as class [XXXX] per IEC
62304:2006/AMD1:2015 based on the decision-making process outlined in table
3 and in paragraph 4.3 of the norm. A malfunction of, or latent design flaw in
the software device may lead to situations with unacceptable risks [for example:
false-positive and false-negative diagnosis, resulting in unnecessary interventions
or missed necessary interventions]. This excludes software safety class A. Serious
injuries or death, however, can be ruled out because [XXXX]. Considering these
risk control measures external to the software system, safety class C can be ruled
out, resulting in class B.

2



Measuring Function The [enter device name] does not include a measuring
function, as described in EU Regulation 2017/45 and relevant regulatory guidance
documents. The definition of MEDDEV 2.1-5 for measuring functions does not
apply because [XXX].

Combination With Other Products To achieve its intended purpose, the
[enter device name] is intended to be used in combination with [for example:
MRI/CT scanners that produce imaging data]. Specifications for compatible
equipment are described in the List of Software Requirements as well as in the
Instructions for Use. Relevant verification and validation tests will be added to
the documentation.

Product Lifetime The software’s lifetime is established to be [for example:
three years], defined as the minimum expected time until a significant change,
implemented in reaction to changes to the established technological state of art
(e.g. SOUP, cybersecurity, clinical protocol).

Programming Languages

List the languages you’ll be using, including compiler and language
versions.

Name Version
Python 3.8

Development Software

List software used to support development, e.g., IDEs.

Name Version
PyCharm 2020.1.4

2.3 System Requirement / Target Runtime

List your target runtime(s).

Name Version
CPython 3.8

Specify system requirements, e.g., the minimum specifications of the
server / compute instance you’ll be running your software on

Minimum system requirements:

3



• Server-grade dual-core CPU, e.g., Intel Xeon E3-1230 v5 or higher
• 4 GB of RAM
• 1 GBit/s up- and downlink
• 20GB SSD storage

3 Design Phases
The 13485 requires you to specify “Design Phases”. Here are some
suggestions which you could use.

Title
Estimated
Completion Date Description Review method

Specification Software Requirements
Checklist

Implementation Code Reviews
Testing System Test
Validation Usability Evaluation
Release Release Checklist

4 Avoiding Common Software Defects Based on Selected
Programming Technology

Discuss how your selected programming technology may introduce
risks and how you plan to avoid them. With modern, dynamically-
typed languages, an obvious risk is that you encounter runtime
exceptions. So you could argue that your test coverage is great and
compensates for that. You could also link to your risk analysis here
if you analyse those risks further.

5 Configuration Management and Version Control
Describe which version control software you’re using (probably git,
like all human beings on this planet right now, except enterprise
developers). Also describe your branching model, i.e., how your
developers create branches during development, how you name them
and how you merge them (pull requests? merge commits? squash
before?). Your code review will be described in the next section.

Importantly, describe which things (code, build files, etc.) are put
in version control. Describe how you name versions and how you
tag them. Your goal should be that you can retrieve an old version
and build it. Why? Something with a newer version may go wrong
(harm patients) and you may need to roll back.

git is used as version control software. All source code and build files are
committed to version control.

4



When implementing software requirements, developers create a new branch start-
ing at master. During development, developers may create intermediate commits
on this development branch.

When implementation is completed, a new merge commit to master is created.

This is also the activity which constitutes integration of software
units.

For each release, the goal is to be able to uniquely identify it and retrieve all
relevant files (code, configuration files like build scripts, SOUPs, etc.) at any
time in the future.

When a new software version is released, its commit is tagged in git. The tag is
constructed by adhering to semver (semver.org) 2.0.0 which results in a version
of format MAJOR.MINOR.PATCH, e.g., 1.0.0.

6 Documentation Activities
Describe your policy on what should be documented while you develop
software. Maybe you want to require your developers to document all
methods which are private. Maybe you want to keep an up-to-date
software architecture diagram in the repository, etc. Make sure to
mention how traceability between Software Requirements and Tests
is maintained.

7 Implementation Verification Activities
Describe verification activities, e.g. code review.

For each pull request, a code review is performed by a team member who was not
the main author of the code under review. The code review is only marked as
“approved” if the code complies with the code review criteria. This is:

• Code fulfils the software requirements
• Adherence to PEP8 Style Guide

8 Software System Test Activities
Describe software system test activities. This could be continuous
integration which is triggered by opening a pull request (e.g. Travis
CI, Circle CI). Describe what is tested and how that automated
system works.

Integration tests are included in software system tests.

9 Validation Activities
Validation is carried out as formative and summative usability evaluation as
described in the software development process. A usability evaluation file (plan,

5

https://semver.org
https://www.python.org/dev/peps/pep-0008/


protocol and report) will be prepared.

10 Maintenance Activities
Describe how often you check SOUP issue trackers and how you
document them.

SOUP issue trackers are checked at least once every 6 months. The verification
date is updated in the SOUP list accordingly.

Template Copyright openregulatory.com. See template license.

Please don’t remove this notice even if you’ve modified contents of this template.

6

https://openregulatory.com
https://openregulatory.com/template-license

	Software Development and Maintenance Plan
	Mapping of Standard Requirements to Document Sections
	1 Relevant Processes and Documents
	2. Required Resources
	2.1 Team
	2.2 Software
	2.3 System Requirement / Target Runtime

	3 Design Phases
	4 Avoiding Common Software Defects Based on Selected Programming Technology
	5 Configuration Management and Version Control
	6 Documentation Activities
	7 Implementation Verification Activities
	8 Software System Test Activities
	9 Validation Activities
	10 Maintenance Activities


